How Fo-ATPase generates rotary torque.
نویسندگان
چکیده
The F-ATPases synthesize ATP using a transmembrane ionmotive force (IMF) established by the electron transport chain. This transduction involves first converting the IMF to a rotary torque in the transmembrane Fo portion. This torque is communicated from Fo to the F1 portion where the energy is used to release the newly synthesized ATP from the catalytic sites according to Boyer's binding change mechanism. Here we explain the principle by which an IMF generates this rotary torque in the Fo ion engine.
منابع مشابه
Preliminary estimation of rotary torque produced by proton-motive force in fully functional F0F1-ATPase.
F(0)F(1)-ATPase is a rotary molecular motor. It is well known that the rotary torque is generated by ATP hydrolysis in F(1) but little is known about how it produces the proton-motive force (PMF) in F(0). Here a cross-linking approach was used to estimate the rotary torque produced by PMF. Three mutant E. coli strains were used in this study: SWM92 (deltaW28L F(0)F(1), as control), MM10 (alphaP...
متن کاملTorque, chemistry and efficiency in molecular motors: a study of the rotary–chemical coupling in F1-ATPase
Detailed understanding of the action of biological molecular machines must overcome the challenge of gaining a clear knowledge of the corresponding free-energy landscape. An example for this is the elucidation of the nature of converting chemical energy to torque and work in the rotary molecular motor of F1-ATPase. A major part of the challenge involves understanding the rotary-chemical couplin...
متن کاملHow subunit coupling produces the -subunit rotary motion in F1-ATPase
FoF1-ATP synthase manufactures the energy ‘‘currency,’’ ATP, of living cells. The soluble F1 portion, called F1-ATPase, can act as a rotary motor, with ATP binding, hydrolysis, and product release, inducing a torque on the -subunit. A coarse-grained plastic network model is used to show at a residue level of detail how the conformational changes of the catalytic -subunits act on the -subunit th...
متن کاملDissecting the role of the γ-subunit in the rotary-chemical coupling and torque generation of F1-ATPase.
Unraveling the molecular nature of the conversion of chemical energy (ATP hydrolysis in the α/β-subunits) to mechanical energy and torque (rotation of the γ-subunit) in F1-ATPase is very challenging. A major part of the challenge involves understanding the rotary-chemical coupling by a nonphenomenological structure-energy description, while accounting for the observed torque generated on the γ-...
متن کاملElectric Field Driven Torque in ATP Synthase
FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences
دوره 355 1396 شماره
صفحات -
تاریخ انتشار 2000